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ソフトウェア定量的測定のススメ 

 Phase 1 



ソフトウェアの定量的測定とは？ 

 ソフトウェアの定量的測定とは？ 
 ソースコードの規模、複雑さ、構造、保守性などの特性について 

数値や尺度等に指標化すること。 

 尺度や測定方式をまとめてメトリクスと呼ぶ。(JIS X 0141) 

 なぜ必要か？ 
 全体把握することが不可能なほど巨大・複雑化したソフトウェアを、ある特性を用

いて把握し、ソフトウェアに関わるプロセスや品質をコントロールするため。 

 たとえば： 
 定量的管理の有無でプロジェクトの成否は左右される。 
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参考：矢口ら、日経コンピュータ2008年12月1日号「第2回プロジェクト実態調査」 

定量的管理 成功率 

あり 45.6％ 

なし 24.3％ 



定量化と開発プロジェクト成否の関連について 

 ソフトウェア開発に寄与するSW・構造・開発者・ 
進捗等のメトリクスは完全には特定できていない 
 メトリクスを統計的に解析することによって、品質に関わる要素を 

特定している組織もあるが、一般化はできていない。 

 

 不具合予測に関するメトリクスについての研究は 
活発に続いている [畑ら2012] 

 ソフトウェア工学における重要なテーマの一つ。 

 不具合の潜在が疑われるモジュールを、早期に予測することが 
求められている。 
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最新研究事例紹介： 

システムデザインと構造複雑度の 
コストについて 

 Phase 2 
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アーキテクチャとコストについての研究と研究論文著者紹介 

Sturtevant, Daniel Joseph, 

“System design and the cost of 
architectural complexity”, 
Thesis (Ph. D.) Massachusetts Institute of Technology, Engineering Systems 
Division,2013 

 MacCormack らの研究グループ： 
• ソフトウェア製品アーキテクチャ※に関する研究を行う 

※ アーキテクチャ：設計要素間の依存性(結合状態)をシステムの特徴として扱おうというアイディア [Simon1962] 

• アーキテクチャの測定、アーキテクチャ変化の定量化について有益な発表を行っている 

  数少ない研究グループ(MacCormack, Rusnack, Baldwin ら) [立木2010] 

• Sturtevantも所属 
• 2008 - 2013  MIT, ESD: PhD in Engineering Systems 

• 2013年当時 The MathWorks(MATLAB開発元) システムアーキテクト 

• Alan D. MacCormack:ソフトウェア科学、企業研究等Awards & Honors 多数 
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Sturtevantが掲げた研究課題 

構造複雑度が開発会社に課すコストは？ 

コストを発生させるものとして、以下三つを検討する 

1. 複雑度はバグ密度を増加させるか？ 
 2. 複雑度は生産性を減損させるか？ 

 3. 複雑度は離職率を増加させるか？ 

Sturtevant 2013 要約 
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ソフトウェアの構造的な複雑度が爆発的に増大する例 

設計上のルールが間違って破られたとき、 
全ての要素は依存関係を持つ 

引用：Sturtevant 2013 Webinar “Slide 10” 

たった2か所、誤った依存が混入しただけで、 
すべての要素に依存関係が発生している 
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分析対象 

 分析アプローチ 

 1. 米国にて成功している開発会社: “Iron Bridge 社” (仮名)  

• 商用大規模ソフトウェア開発 

 2. 大規模商用ソフトウェア1つ、8リリースを追う 

• ファイル間の依存関係を抽出する 

• 複雑度を計測する 

• 各開発期間ごとにバグ発生数、発生箇所、開発アクティビティを計測する 

• コストと消耗に関する重要な情報を抽出する 

 3. バグと複雑度に関して回帰分析を用いて検証 

 4.シミュレーションを行い、分析で得られた要素のImpactサイズを確定 

Sturtevant 2013 要約 
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解析手法 - Step1. ファイル間の依存を抽出 

File A 

File B 

Function Call 
Method Call 

Class Instantiation 
Class Inheritance 

Global Data Reference 

A B 

C 

D 

抽出した依存関係から 
ネットワーク表現を構成 
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解析手法 - Step2. 直接依存関係から間接依存関係の導出 

引用：Sturtevant 2013 Webinar “Slide 23” 

A B 

C 

D 

A B 

C 

D 
ネットワーク表現 

Traditional 
Network 

View 

DSM表現 

Design 
Structure 
Matrix 

A B C D 

A 

B 

C 

D 

A B C D 

A 

B 

C 

D 

直接依存 

間接依存 

Direct 
Dependencies 

Indirect 
Dependencies 
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解析手法 - Step3. Visibility Score を間接依存グラフから取得 

間接的な依存要素数 も含めた Fan-In/Out 

Visibility Fan-In Visibility Fan-Out 

File A 3 1 

File B 3 1 

File C 2 3 

File D 1 4 

引用：Sturtevant 2013 Webinar “Slide 25” 

A B 

C 

D A B C D 

A 

B 

C 

D 

Visibility Fan-In/Out (VFI/VFO) 
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解析手法 - Step4. Visibility Score を基に構造複雑度を分類 

Peripheral・・・複雑度 低 

Peripheralに属するファイルは、周辺に影響を及ぼさず、また、残りの多くのファイルから影響を受けない。 

Utility・・・複雑度 やや低 
システムの大半はこれにUtilityに属するファイルに依存する。しかし、このUtilityに属するファイルは他の
ファイルに対して依存がすくない。依存は内包され、安定している。 

Control・・・複雑度 やや高 
Controlに属するファイルは機能性を操作するため、他のファイルへの依存が高い。 

Core・・・複雑度 高 
Coreに属するファイルは、他のファイルに対して直接あるいは間接的に共同依存する。また、大きな循環を
含むシステムに不可欠な形成する。これらの領域は小さなコンポーネントに分解するのが難しく、また、大きく
なりすぎる場合は、管理不能になる可能性がある。 

Sturtevant 2013 要約 

Architectural Complexity (構造複雑度) の分類 
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解析手法 - Step4. Visibility Score を基に構造複雑度を分類 

VFI・VFO High/Low の判定： 

全ファイル中で最大VFI・VFOの1/2を閾値とする 
個々のファイルの最大VFI・VFOそれぞれ閾値以上だったらHigh、下回ったらLowに分類 

引用：Sturtevant 2013 Webinar “Slide 22” 

VFO Low Low High High 

VFI Low High Low High 

Architectural 
Complexity 

Peripheral Utility Control Core 
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Step4. 各リリースごとの構造複雑度の分類結果 

構造複雑度がバージョンごとに増加している 

引用：Sturtevant 2013 Webinar “Slide 30” 
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Step5. 複雑度の品質の分析(回帰分析) 

• 命題「複雑度がバグ密度を増大させる」が支持された 

• 構造複雑度が高い順でバグ密度は高くなる (有意水準0.1%) 

係数の大きさ Core > Control > Utility > Peripheral 

引用：Sturtevant 2013 Webinar “Slide 37” 
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分析結果を元にしたバグ予測シミュレーション結果 

Untestable 5.86 8.39 13.66 18.42 

High 5.78 8.28 13.47 18.18 

Mid 4.49 6.44 10.47 14.13 

Low 2.22 3.18 5.18 6.98 

Peripheral Utility Control Core 

Architectural Classification 

M
c
C

a
b

e
 C

la
s
s
ific

a
tio

n
 

McCabe :  

Architectural :  

バグ修正に要する修正行数 予測シミュレーション結果 

Combined :  

対象のソフトウェア典型的なソースコードファイルを仮定 

サイズ：550LOC, ファイル年齢：4.198  
引用：Sturtevant 2013 Webinar “Slide 39” 

x8.3 

x2.6 

x3.1 



事例検証：オープンソースソフトウェアを用いた追試検証 

 検証その１：複雑度-バグ密度の関連 

 検証その２：複雑度-潜在的コードエラーの関連 

 
対象ソフトウェア： 

Apache Ant™ (ビルドツールソフトウェア) 
Apache Software Foundation, Open source project 

開発言語：Java  対象バージョン：1.7, 1.8・・・2008年から5年間 
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検証使用ツール ツール名称 

変更履歴 Bugzilla Mozilla Foundation 

リポジトリ Subversion Apache Software Foundation 

構造的複雑度 Lattix Lattix, Inc. 

手続き的複雑度 Understand SciTools, Inc. 

潜在的コードエラー Jtest Parasoft 
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検証1：複雑度-バグ密度の関連 

Peripheral Utility Control Core 

Untestable ー ー ー ー 

High ー ー 36% 67% 

Mid 13% ー 17% 38% 

Low 4% 8% 4% 8% 

Peripheral Utility Control Core 

Untestable ー ー ー ー 

High ー ー 26% 20% 

Mid 13% ー 22% 13% 

Low 10% 13% 12% 11% 

V
e
r.1

.7
 

V
e
r.1

.8
 

Ant Ver.1.7,Ver.1.8のいずれのバージョンも、
複雑度の増加により、バグ密度が高くなっている
傾向 
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検証2：複雑度-潜在的コードエラーの関連 

 バージョンアップにより、McCabe複雑度よりも、構造複雑度の増加の方が顕著 

 関数/メソッド内の複雑さ(=McCabe複雑度)よりも、コンポーネント間の複雑さ 
(＝構造複雑度)の方が、開発者の理解を難しくしており、バグの発生に繋がりや
すくなっていると予想される 

McCabe複雑度分類 構造複雑度分類 
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検証2：複雑度-潜在的コードエラーの関連 

V
e
r.1

.7
 

V
e
r.1

.8
 

Ant Ver.1.7, Ver.1.8 いずれのバージョンも、複雑度の増加
により、潜在的コードエラーの密度が高くなっている傾向 

Peripheral Utility Control Core 

Untestable ー ー ー ー 

High ー ー 8.35 12.20 

Mid 1.25 ー 3.00 5.65 

Low 0.72 0.38 0.64 1.20 

Peripheral Utility Control Core 

Untestable ー ー ー ー 

High ー ー 5.64 7.00 

Mid 1.25 ー 2.16 5.76 

Low 0.50 0.12 0.64 0.90 



事例検証：オープンソースソフトウェアを用いた検証結果 

 検証その１：複雑度-バグ密度の関連 

 

 

 
 

 検証その２：複雑度-潜在的コードエラーの関連 
 

検証対象Antについても、 

「構造複雑度が増すとバグ密度が増加する」 
という Sturtevant の結論と類似の傾向が確認できた 

「構造複雑度が増すと、潜在的コードエラー
も増加している」 ことが確認できた 
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ソフトウェア定量化による予測についての最新研究事例まとめ 

構造複雑度が高い箇所は低い箇所にくらべて 

バグ密度が      倍もある 

複雑度の高い箇所を担当して開発者は、低い箇所を担当している開発者に比べて 
生産性が 50% も落ちる。 

複雑度の高い箇所を担当している開発者の離職率は、低い箇所を担当している 
開発者に比べて 10倍 も高くなる。 

3.1 

Acknowledge： 
• 生産性や離職率については、検証事例がさらに必要。 
• バグ密度に対するネットワークベースメトリクスの影響を扱った研究は過去にもあるが、商用に開発された成熟したソフトウェアシステム 

のバグに対するネットワークベースの複雑度メトリクスの影響を、複数のリリースにわたって調査したものは本研究が初めて。 
• 成功した一企業内に対してだけ計測を実施したため、本研究の成果が使用可能な場は、複雑性が許容範囲内にコントロールされた 

状況における複雑性のコストについてだけである。 
• 複雑性のコストにフォーカスしたので、複雑性は生まれながらに悪ではない。複雑性は価値を追加する。マネージャの合理的意思決定

(利益-Cost)についても検討が必要。 



ソフトウェア開発プロセスにおける構造
複雑度の活用提案 

 Phase 3 



研究事例ふりかえり 

 

• 構造的な複雑さが、手続き的な複雑さと同程度にソフトウェアの欠陥に影響する。  

• 既知ソフトウェア工学的手法によってコントロールされた品質の高いソフトウェア※に対しても、
構造複雑度を監視することで、ソフトウェア欠陥を更に予防することが可能と考えられる。 

※Iron Bridge Software社 [Sturtevant2013]の大規模商用ソフトは、構造的な複雑さによる残留バグがあった。 

Sturtevantが明らかにしたこと 

 

• Sturtevantが示した構造複雑度によるバグ予測は品質が高く管理されたソフトウェアにつ
いては適用可能と考えられるが、品質が低く管理されていないソフトウェアにも適用可能か
どうかは不明。ソフトウェアプロジェクトごとに検証する必要あり。 

さらに検証が必要なこと 

 

• あるソフトウェアプロジェクトに対する構造複雑度によるバグ予測の適用可否については、追
試検証で示したようにSturtevantのバグ予測と同様の傾向になることが当該プロジェクト
で確認されたならば、構造複雑度によるバグ予測が適用可能で、欠陥予防に役立つ。 

追試結果から考えられること 
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ソフトウェア開発プロセスにおける構造複雑度の応用 

要求分析 

コード実装 

単体テスト 

システムテスト 

結合テスト 構造設計 

詳細設計 
 

（1）リファクタリング 

（2）コードレビュー効率化 

設計・実装プロセスにおける欠陥
除去の効率化を目的として、構造
複雑度を用いた上記2施策の提
案を行います。 

構造複雑度の応用 

V字型ソフトウェア開発プロセス例 



構造複雑度を用いたソフトウェア開発プロセス改善の施策提案 その１ 

整った
構造 

複雑度
肥大 

ソフトウェア作成・変更 

リファクタリング実施 

Utility  
Files 

Core  
Files 

Peripheral 
Files 

Control 
Files 

Utility  
Files 

Core  
Files 

Peripheral 
Files 

Control 
Files 

リファクタリング後のDSM リファクタリング前のDSM 

 

一般に用いられているソフトウェアリファクタリング
のルールに、構造複雑度による監視ルールを追加
します。ソフトウェア開発に進むにつれ、構造的な
複雑さを起因とする欠陥が発生しやすい状況にな
るのを回避します。 

提案その１：リファクタリング 

複雑度の高い
Coreの割合
が大きい 

リファクタリングにより複雑
度の高いCoreの割合を減
らす 



構造複雑度を用いたソフトウェア開発プロセス改善の施策提案 その１ 

【構造複雑度に注目したリファクタリング手法】 

直接的なコンポーネント間依存関係だけでなく、間接
的な依存関係にも注目し、In/Out両方の依存を
多数持つコンポーネントを減らしていくため、以下を実
施していきます。 

 多数のIn/Outの依存関係を持つコンポーネント
がある場合には、適切な責任分担を検討し、複
数のコンポーネントに分割します。 

 構造的な循環依存が発生しているコンポーネント
を見つけ、設計で意図した階層構造に従うようコ
ンポーネント間の依存関係を修正します。 

 

 

 

 

 

リファクタリング
実施基準 

構造複雑度割合 

経過 

複雑度低減目標 

例）ソフトウェアの構造複雑度変化
とリファクタリングタイミング 

ソフトウェ

ア品質把握 
事前評価 

リファクタ

リング実施 
事後評価 

ソフトウェ

ア再評価 

リファクタリングライフサイクル 

構造複雑度の監視 



構造複雑度を用いたソフトウェア開発プロセス改善の施策提案 その２ 

例)人手によるソースコードレビュー量の変化 

 

• ソースコードレビュー前の
静的解析時に構造複雑
度メトリクスも監視し、構
造的に複雑な箇所をリス
クの高いコードと特定する。 

• リスクの低いコードは開発
者自身+静的解析で
チェックし、リスクの高い
コードは静的解析に加え
て人手(開発者以外の目
視)によるチェックを行う。 

提案その２：レビュー効率化 

全コード
目視 
【旧来】 

静的解析
+目視 
【現在】 

構造複雑度含めた
静的解析+目視 
【提案】 

目視によるコードチェック量を減らし、開発時
に不足しがちなレビューアーの負担を軽減する。 

ソース 
コード量 

危険な箇所の特定。危険な箇
所を対象に重点的にレビュー実
施し、残留バグを取り除く。 

メリハリをつける 
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